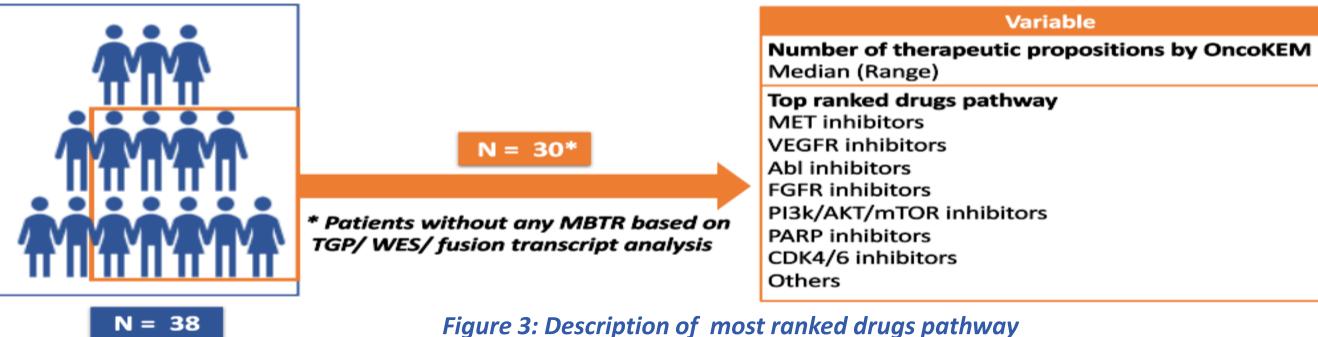


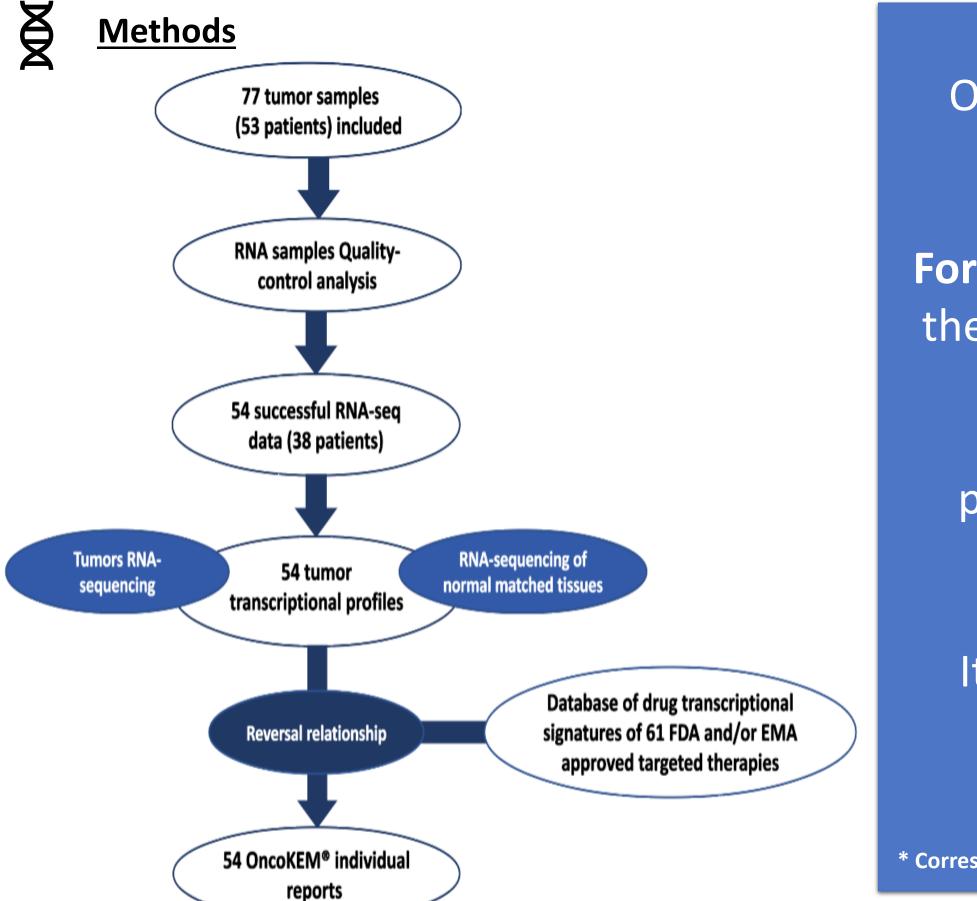
1554

Feasibility of an explainable AI-based therapeutic recommendation-tool utilizing tumor gene expression profiles for precision medicine in advanced & refractory solid tumors

Ouissam Al Jarroudi^{1,2,3*}, Coralie Williams⁴, Rita Santos², Armelle Dufresne⁵, Valéry Attignon⁶, Anthony Ferrari⁷, Sandrine Boyault⁶, Laurie Tonon⁷, Séverine Tabone-Eglinger⁸, Philippe Cassier⁵, Nadège Corradini⁹, Armelle Vinceneux⁵, Aurélie Swalduz⁵, Alain Viari⁷, Sylvie Chabaud¹⁰, David Pérol¹⁰, Mohammad Afshar^{2,4}, Jean-Yves Blay^{5,11}, Olivier Trédan⁵, Pierre Saintigny^{1,5,11*}

1- Department of translational medicine, Centre Léon Bérard, Lyon, France; 3- Faculty of medical Oncology, Centre Léon Bérard, Lyon, France; 3- Faculty of medicine and pharmacy, Oujda, Morocco; 4- Ariana Pharma, Paris, France; 7- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 7- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 7- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 7- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centre Léon Bérard, Lyon, France; 8- Platform of Cancer Genomics, Centr Bioinformatics Gilles-Thomas, Centre Léon Bérard, Lyon, France; 8- Biobank, Centre Leon Bérard, Lyon, France; 10- Department of Clinical Research, Centre Léon Bérard, Lyon, France; 11- Univ Lyon, Claude Bernard Lyon 1 University, INSERM 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, Lyon, France.


Background


- Precision oncology aims to guide patient treatment decisions by matching biological features with available drugs.
- Extensive genomic analysis allows to identify an actionable alteration in only 40-60% of patients [1].
- Recently, a study of 50 pts with advanced refractory diseases included in PROFILER trial (NCT01774409) [2], whole exome and fusion transcripts had a limited value over a 90-tumor gene panel to increase molecular-based treatment recommendations (MBTR).

Objective

To evaluate the feasibility of the AI-transcriptional-based therapeutic recommendation-tool Onco KEM[®] to guide treatment recommendations for patients without tractable DNA-alterations.

Results 不

Figure 1: Description of study methodology

Funding: the work was funded by OmiCure, Ariana Pharma and INCa-DGOS-Inserm_12563 (LYRICAN)

Most common diagnoses were gynecological cancers (23.6% of which 77.8% were ovarian cancers), followed by breast cancers (21% of which 66.7% were triple-negative breast cancer [TNBC]), digestive cancers (18.4% of which 71.4% were colorectal cancers [CRC]), and soft tissue sarcomas [STS] (13.1%) (Table1).

Most frequently proposed drugs among the top 10 were *palbociclib, talazoparib, infigratinib* in TNBC; *bosutinib, sapanisertib,* SAR125844 in OC; SAR125844, osimertinib, onartuzumab in CRC; ipilimumab, cabozantinib, sapanisertib in STS (Figure 2). Even in the 30 patients cohort (79%) without any MBTR based on TGP/WES/fusion transcript analysis, all had at least 2 proposed targeted therapies in the Onco KEM[®] report (Median: 4) (*Figure 3*).

Only **21%** of patients had a recommendation (Molecular Based Treatment) Recommendation based on TGP/WES/fusion transcript analysis).

For all patients, at least 2 (median 4) targeted therapies were proposed using the AI-transcriptional-based therapeutic recommendation-tool OncoKEM®.

This tool has the *potential to expand* personalized cancer treatment in patients with advanced & refractory diseases *without tractable genomic* alterations.

Its *clinical relevance* assessment is planned in an *upcoming clinical trial*.

Copies of this poster are for personal use only and may not be reproduced without permission from ASCO[®] and the author of this poster * Corresponding authors email address: rita@omicure.com and Pierre.SAINTIGNY@lyon.unicancer.fr

<u>References:</u> 1. Malone ER, et al. Molecular profiling for precision cancer therapies. *Genome Med* 12, 8 (2020). 2. Trédan O, et al. Molecular screening program to select molecular-based recommended therapies for metastatic cancer patients: analysis from the ProfiLER trial. Annals of Oncology, 2019

OMICURE

Ariana

%		
4 (2 – 9)		
18% 12% 12% 11% 11% 10% 7% 19%		

Characteristics	%
Age: Median (Range)	53 (21 – 70)
Gender	
Female	60.5%
Male	39.5%
Primary tumor site	
Gynecological	23.6%
Breast	21%
Digestive	18.4%
Sarcomas	13.2%
Others	23.8%
Disease stage	
Metastatic	92.1%
Locally advanced	7.9%
Number of metastasis sites: Median (Range)	2 (1 – 5)
Number of previous treatment lines: Median (Range)	4 (1 – 11)

Table 1: Baseline characteristics

	Ovarian	Colorectal	Soft tissue
TNBC	carcinoma	cancer	sarcomas
(N = 8)*	(N = 9)*	(N = 6)*	(N = 7)*

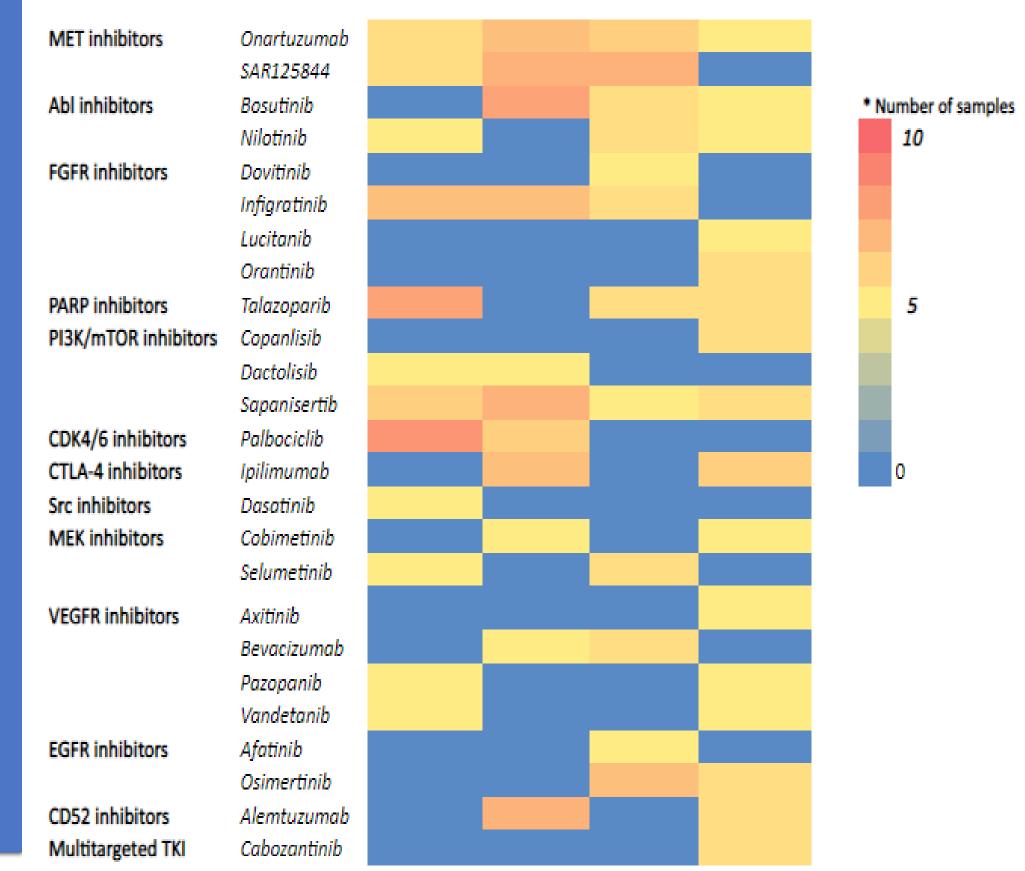


Figure 2: Ranking of targeted therapies in the 4 most frequent types of cancer